Америций: как уберечься от смертельно опасного продукта распада плутония, выброшенного Чернобылем. Радиационная обстановка на территории республики беларусь Карта загрязнения радионуклидами беларуси

05.07.2023 Частные

По сравнению с Гомелем Гродно казался совсем безопасным местом в Беларуси. Здесь никто не говорил о радиации, а дети не ездили на лечение в Канаду, Германию и даже Японию, как жертвы Чернобыля. Гродненская область действительно считается одним из самых незагрязнённых регионов Беларуси. В 1986 году 23% территорий Беларуси были загрязнены цезием-137 выше 1 Кюри на квадратный километр. В Гродненской области самый «летучий» радионуклид с недопустимой плотностью загрязнения «осел» в трёх районах: Новогрудском, Ивьевском и Дятловском, рассказывает "Гродненский зеленый портал".

- В регионе были зарегистрированы 84 населенных пункта с периодическим радиационным контролем, где плотность загрязнения цезия-137 от 1 до 5 Кюри на квадратный километр, в том числе в Новогрудском районе – 12, в Ивьевском – 50, Дятловском – 22, - говорит заведующий отделением радиационной гигиены Гродненского центра гигиены, эпидемиологии и общественного здоровья Александр Размахнин.
В зоне радиоактивного загрязнение расположено 5,2% лесных угодий Гродненской области. Распространение изотопов цезия-137 имело пятнистый характер, что хорошо видно на картах. Любопытно, что на карте Атласа современных и прогнозных аспектов последствий аварии на Чернобыльской АЭС на пострадавших территориях России и Беларуси обозначено небольшое пятно с загрязнением цезия-137 от 5 до 15 Ки/кв.км (зона с правом на отселение) в Новогрудском районе. По прогнозам к 2046 году территория загрязнения радионуклидом с плотностью загрязнения от 1 до 5 Кюри на квадратный километр останется только в Новогрудском районе. Если сравнивать с Гомельской областью в том же 2046 году большая часть региона будет по-прежнему загрязнена цезием-137 от 1 до 5 Ки/кв.км, в отдельных районах - от 15 до 40 Ки/кв.км. Учёные выяснили, что за первые 10 лет после катастрофы жители загрязненных районов Гродненской области получили наименьшее облучение по сравнению с другими регионами страны. Для сравнения: показатели Гомельской области превышаются почти в 1 000 раз (Гомельская – 10 398 человеко-Зивертов, Гродненская – 133). Тем временем 30-летие со дня Чернобыльской катастрофы вроде как несёт и хорошие новости – полураспад «летучего» цезия завершился, а значит, территории должны быть чище, но…
- Полный распад цезия-137 длится 300 лет. С физической точки зрения сейчас этого дозообразующего радионуклида стало в два раза меньше. Вроде как опасность должна уменьшиться, а этого не произошло. Почему? Радионуклидов стало меньше, они погружаются в почву, где их «хватают и вытягивают» наружу корни растений. А снаружи люди, которые потеряли страх, собирают на этих территориях грибы, ягоды, пасут коров. Получается парадоксальная вещь – цезия становится меньше, а внутреннее облучение у жителей, которые едят эти продукты, становится больше. Чернобыль не ушёл, он рядом с нами, и иногда становится злее, чем был! Предстоят ещё чудеса: есть ещё плутоний, который сейчас «покоится» в зоне отчуждения (период полураспада 24 тысячи лет), но он, распадаясь, превращается в америций-241, а это такой же сильный и «подвижный» излучатель радиации. Территории, которые были загрязнены плутонием в 1986 году, станут в 4 раза больше к 2056 году, потому что плутоний превратится в америций, - говорит Алексей Яблоков.
_ Радиоактивное загрязнение территории Республики Беларусь йодом-131 на 10 мая 1986 г. rad.org.by «Йодный удар», который проходил с мая по июль 1986 года по Беларуси, стал причиной роста рака щитовидной железы (РЩЗ). Заболевание признаётся официально как главное медицинское последствие Чернобыльской катастрофы. Более 50% всех случаев РЩЗ в группе 0-18 лет за 20 лет после аварии возникло у детей, которым во время «йодного удара» было до 5 лет. По официальным данным, число людей, заболевшими раком (в момент катастрофы им было до 18 лет) увеличилось в 200 раз в период с 1989 по 2005 года. Кроме того, по данным Министерства здравоохранения РБ до катастрофы (1985 год) 90% детей относились к категории «практически здоровы». К 2000 году число таких детей составило менее 20%, а на сильно загрязненных территория Гомельской области – 10%. По данным официальной статистики, число детей-инвалидов в период с 1990 по 2002 года увеличилось в 4,7 раза.

Естественному радиационному воздействию мы были подвержены и до аварии на Чернобыльской АЭС. TUT.BY посетил четыре научно-исследовательских учреждения, изучил документы, часть из которых еще не опубликована, и узнал, как «природное облучение» радоном влияет на здоровье белорусов.

Белорусские ученые, исследовавшие проблему, единодушны: радон влияет на уровень заболеваемости — онкологией в том числе — сейчас гораздо больше, чем отголоски Чернобыля. Проблема радонового облучения существует практически во всех странах, как и способы борьбы с ней. Но именно в Беларуси все сконцентрированы на теме чернобыльской радиации — есть зарубежные фонды, есть гранты на преодоление последствий техногенной катастрофы. Радон же с точки зрения привлечения средств «неинтересный», свой, с которым белорусы должны, по-хорошему, справляться сами. Но в условиях кризиса на государственном уровне финансирование исследований по радону сокращается и проблему просто не афишируют.

Что за газ такой?

Для начала определимся, что такое радон. Это газ, который образуется при распаде радия. Он тяжелее воздуха в 7,5 раза и поэтому накапливается в подвалах и на первых этажах. Радон не имеет запаха, его нельзя «почувствовать». Поступает в организм через легкие, — часть случаев рака легких можно объяснить его воздействием.

Хотя со словом «радон» у многих первая ассоциация — одноименный санаторий. Мол, какой рак, мы же помним — радон полезен. Но весь вопрос в дозировке. Здесь, как с солнцем, без него — рахит, а проведи на солнцепеке день в плавках — ожоги, тепловой удар, угроза развития рака кожи.

— Радон содержится в почвенном воздухе, воде и может проникать в помещения, если они находятся на участках, где его содержание высоко, в частности, в зонах тектонических разломов, — объясняет директор Института природопользования НАН Александр Карабанов . — В Беларуси не менее 40% территории является потенциально радоноопасной. Предельно допустимой нормой для жилых помещений принято считать 200 беккерелей на кубометр. Превышение радона фиксировалось в помещениях ряда населенных пунктов страны, чаще всего в Гродненской, Могилевской и Витебской областях. На разломах стоит и Минск, правда, точной их карты нет.

Основные источники и пути проникновения радона в здания. Газ попадает в помещения из почвы, воды, стройматериалов. Источник: Geoliss.ru

Масштаб проблемы

По материалам ООН, в ежегодном облучении человечества доля воздействия продуктов различных испытаний составляет 0,7%, от работы АЭС — 0,3%, при медицинских обследованиях — 34%, естественных природных факторов — 22%, а продуктов распада радона — 43%. Об этом указано в статье «Концентрация радона в почвенном воздухе», опубликованной на сайте Института природопользования НАН Беларуси.

«Спустя почти 30 лет радиационная обстановка в Беларуси существенно улучшилась. Вклад „чернобыльских“ радионуклидов в суммарную дозу облучения населения Беларуси от всех природных и техногенных ИИИ в настоящее время не превышает 5%», — говорится в «Мониторинге радона в воздухе зданий населенных пунктов на территории Брестской области». А вот значение среднегодовых эффективных доз облучения радоном в четырех отдельных районах страны превышает эффективную дозу облучения населения от «чернобыльских» радионуклидов в 2,4−13,8 раза, по Брестской области — в 6 раз.

— В ряде стран проводили соответствующие исследования. Там, где выше концентрация радона, выше заболеваемость, онкологическая в том числе, — говорит профессор Александр Карабанов. — Установлена также связь гастрита, сахарного диабета, ревматизма с долговременным нахождением в таких зонах.

Главный радиолог Могилевского центра гигиены и эпидемиологии Леонид Липницкий принимал участие в исследовании рисков заболевания от природного облучения.

— В обществе существует недопонимание проблемы радона, — констатирует он. — Среднегодовые эффективные дозы облучения на одного жителя Могилевской области составили: от природных источников ионизирующего излучения, в том числе радона 2,5 милизиверта, от радиоактивного загрязнения вследствие аварии на ЧАЭС (для радиоактивно загрязненных территорий) — 0,34 мЗв. Разница существенная.

Это не секретная информация. Проблеме защиты здоровья населения от радона посвящены тома научных трудов за рубежом.

— При этом радиационная опасность природного радона в Беларуси мало освещалась. До сих пор не разработана национальная программа исследований по проблеме радона и защите населения от облучения этим газом. Но эпидемиологические исследования давно обнаружили прямую связь между облучением радоном и онкологическими заболеваниями, — говорит Леонид Липницкий.

Где выходит радон?

В целом под Беларусью идут сотни разломов. В полном размере карта их

— На территории Минска один разлом идет примерно вдоль Свислочи, второй — с юго-запада на северо-восток, третий — по западной части города, частично под проспектом Пушкина, — говорит Александр Карабанов . — Разломы могут иметь ширину более километра (она отличается на различных участках) и идут не по прямой линии.

В 1990-е годы в Беларуси над разломами делались замеры содержания радона, и там его концентрация повышалась в несколько раз. Помимо него, в этих местах отмечаются аномалии геофизических полей.

Впрочем, не только разломы «фонят».

— Высокие концентрации радона в почвенном воздухе образуются в зонах распространения гравийно-галечных, моренных и некоторых других глинистых отложений, а также при неглубоком залегании гранитных пород, — отмечает инженер Объединенного института энергетических и ядерных исследований (Сосны) Лев Василевский. — В Гомельской области — разлом на разломе, но радона там меньше по сравнению с Витебской. Впрочем, на севере они и хуже изучены. Радон может поступать не только из разломов, но и из валунов, камней.

Где «фонит» Минск

Объединенный институт проводил замеры и в Минске.

— Мы нашли повышенное содержание радона в Лошице, на ул. Маяковского, на пр. Пушкина, но это единичные помещения, например загс Фрунзенского района. Много этого газа и в районе Сосен. Например, в карьере недалеко от МКАД 800 Бк на кубометр, что в четыре раза выше нормы, установленной для жилых помещений, — добавляет специалист.

Главный геофизик Геофизической экспедиции Александр Беляшов соглашается, что там, где морены (ледниковые отложения. — Прим. TUT.BY), — повышенная радиоактивность. На севере она выше, чем на юге. Там много глинистых пород.

— Наши радиологи сделали карту корреляции между заболеваемостью раком и мощностью экспозиционной дозы. Вывод: состав почв связан с онкологическими и другими заболеваниями, — уточняет собеседник.


Схема районирования по концентрации радона в почвенном воздухе (№ 1−4, 6 — потенциально радоноопасные участки). Источник: Институт природопользования НАН

В общем, когда медики говорят, что не всегда понимают, почему люди в определенной местности болеют больше, они, возможно, просто не учитывают фактор радона.

По логике, живущих на разломах и на «темных» территориях граждан надо предупреждать об опасности.

— На этих территориях должны проводиться специальные работы по предотвращению проникновения радона в помещения, особенно в жилые, бетонированием и другими способами. Это важно! — настаивает доктор геолого-минералогических наук Алексей Матвеев.

Но население не предупреждают. Впрочем, нельзя сказать, что в Беларуси совсем уж игнорируют проблему.

— В нашей стране при новом строительстве обязательно проводится измерение радона в почве, а стройматериалы проходят тщательный контроль, — уточняет Александр Беляшов.

За рубежом проблеме уделяют должное внимание так давно, что уже никто не замечает, что делается «противорадоновая» защита.

— К нам приезжал шведский специалист и консультировал по разломам. У них четкая корреляция между количеством радона в доме и заболеваемостью раком. Проблема там усилилась давно, когда в моду вошло энергосберегающее жилье с утепленными фасадами, воздухонепроницаемыми окнами. Стали экономить на отоплении, но выросло количество заболеваний, в том числе онкологических, — говорит Александр Беляшов. — В странах с повышенной радоноопасностью существует принудительная герметизация и вентилирование подвалов. Это в нормативах строительных. И даже не обсуждается.

И правда, других способов борьбы с радоном нет: только бетонирование и регулярное проветривание. Этого достаточно.

Деньги закончились

Исследования по радону проводят по мере средств Объединенный институт энергетических и ядерных исследований, Институт природопользования НАН, Геофизическая экспедиция НПЦ по геологии.

Усилиями белорусских ученых была создана карта радонового риска по данным измерениям в воздухе зданий. Представили ее в 2015 году. Судя по карте, повышенные концентрации радона — в помещениях Витебской, Гродненской, северо-восточных районов Могилевской областей. Есть «пятна» с опасной концентрацией радона в пределах 200−400 Бк на кубометр в районах Витебской, Гродненской и Могилевской областей. Для составления карты радонового риска было использовано 3594 измерения в 454 населенных пунктах.


Карта концентрации радона в помещениях (№ 5 — самые темные пятна — 200−400 Бк).

Чернобыльская АЭС находится всего в нескольких десятках километров от границ Гомельской области. Это и предопределило крайне высокое загрязнение южных регионов Беларуси радиоактивными элементами выброса из аварийного ядерного реактора. Гомельский Зелёный портал публикует карты загрязнения радиоактивным цезием-137 земель Гомельщины с 1986 до 2056 года.

Практически с первого дня аварии территория республики подвергалась радиоактивным выпадениям, которые с 27 апреля стали особенно интенсивными. В результате изменения направления ветра до 29 апреля он разносил радиоактивную пыль в направлении Беларуси и России.

Вследствие интенсивного загрязнения территории была проведена эвакуация 24 725 человек с беларусских деревень, а три района были официально объявлены чернобыльской зоной отчуждения. Сегодня, на 2100 кв. км отчуждённых беларусских территориях, где была проведена эвакуация населения, организован Полесский государственный радиационно-экологический заповедник .

Чтобы оценить загрязнённость территории Гомельской области мы публикуем карты радиоактивных выпадений. На картах изображены уровни заражения территории радиоактивным цезием-137.

Гомельская область является одна из наиболее пострадавших от последствий аварии на ЧАЭС . Уровни загрязнения на данный момент находятся в пределах от 1 до 40 и более Кюри /км2 по цезию-137.

На карте загрязнения территории Гомельщины в 1986 году видно, что максимальные уровни загрязнения находились в южной и в северной частях области. Центральные районы и областной центр имели загрязнение до 5 Кюри /км2.



К 2016 году, через 30 лет после катастрофы, период полураспада цезия-137 прошёл и уровни поверхностного загрязнения Гомельской области не должны превышать 15 Кюри /км2 по 137Cs (вне территории Полесского государственного радиационно-экологического заповедника).

Гомельский Зелёный портал обратился за комментарием к эксперту в области радиационного загрязнения территории Беларуси физику Юрию Воронежцеву .

- Насколько можно доверять официальным картам радиоактивного загрязнения наших земель?

В принципе любым картам, которые публикуются из каких-то серьёзных источников можно доверять. Но тут я сделал бы оговорку – если дело касается какого-то конкретного населённого пункта, предположим, в деревне живут ваши родители и вы хотели бы узнать, где у них чисто, где грязно, где продукцию можно выращивать, а где нет, то в таких случаях эти карты не отражают детальную картину происходящего.

Поэтому я бы советовал сходить в Департамент по ликвидации последствий катастрофы на Чернобыльской АЭС МЧС Республики Беларусь и попросить предоставить вам чёткую и конкретную карту вашего населённого пункта. По большинству населённых пунктов такие карты уже есть и по ним можно определить степень загрязнённости.

Учитывая, что загрязнённость обычно носит пятнистый характер, то на одном и том же огороде или поле, скажем в 20 соток, которое по выданной вам карте будет чистое, мы можем найти (не дай Бог), например, два достаточно грязных пятнышка. И мы можем выращивать там продукты, считать, что она чистая, а на самом деле из сорока мешков картошки два окажутся непригодными к употреблению.

- Почему не получилось сделать более точные исследования уровней радиации загрязнённых земель и можно ли сделать это самостоятельно с бытовыми дозиметрами?

Это достаточно сложная работа и я не уверен, что она была проведена везде. Мы это делали ещё в 1991 году с помощью машины с высокой проходимостью. На ней был установлен радиометр - спектрометр Канберра, и мы ездили по полю гауссами и сканировали его. Именно это – самый надёжный метод, потому что те же авиационные съёмки уже не дают такого результата.

Ну а что касается бытовых дозиметров то они хоть и не дают такой точности, но если у вас есть поле в подозрительной зоне, скажем от 1-5 кюри, то лучше его просканировать самостоятельно. Можно затратить на это несколько дней, но так у вас будут более точные данные. Делать это необходимо медленно, поскольку определение уровня радиации занимает некоторое время.

- Существует стереотип, что домашние дозиметры подкрученные или подпорченные. Насколько им можно доверять?

Тут скорее ситуация в путанице единиц измерения. Если раньше их выпускали с указанием в микрорентгенах/час, то сейчас аппараты уже создаются с другими единицами измерения. Если ранее было понятие мощности дозы, то сейчас – эффективной дозы. Если раньше всё измеряли в микрорентгенах/час, то, не увидев их на новых дозиметрах, часто возникает путаница. Бывают единицы в сто раз меньше, то есть, чтобы перевести в микрорентгены надо на умножить на сто и другие подобные ситуации. Поэтому люди и говорят «о, тут у меня было 50 микрорентген, а сейчас – 0,50 каких-то непонятных единиц. Значит он подкручен!». Но во всём можно разобраться.

Бытовые приборы достаточно объективны, но другое дело, если вы ими будете измерять продукты питания, как иногда делают - приставляют прибор к грибам и они как бы чистые. Но там совершенно другой принцип измерения содержания радионуклидов в продуктах. Если они уже будут светиться, то прибор что-то засечёт, но во всех других ситуациях – нет.

Конечно, нельзя говорить так, как заявляет официальная пропаганда что «всё закончилось, у нас уже чисто и хорошо и вообще нет радиации». Бывает, выловят какую-нибудь бабку и она говорит «а, дзе тая радыяцыя? Я яе не бачу!». На самом деле всё это есть и осталось, но если вести себя разумно, если пользоваться теми несложными рекомендациями, которые дают учёные, то можно вполне избежать тех неприятностей, которые несут нам последствия чернобыльской радиации.

- Приведённые нами карты основаны на показателях по цезию-137. Насколько он является хорошим показателем загрязнённости земель? Нужны ли карты по всем радиоактивным микроэлементам чтобы составить полную картину происходящего?

Цезий – самый распространённый радионуклид из тех, которые выпали. К тому же он очень летучий, поэтому он распространился на территории значительно большей, чем тот же стронций. Есть карты и по стронцию и к ним тоже стоит обращаться, поскольку хоть он и менее летучий, но успел загрязнить изрядное количество земель.

Что касается плутония, то он осел как тяжёлый радионуклид в тридцатикилометровой зоне. А вот америций – элемент, который возникает при его распаде – крайне неприятная вещь. Это ещё большее зло, поскольку он существует в легкорастворимой форме и способен переходить в другие слои почвы. Но в основном эти элементы осели в 30-тикилометровой зоне, где люди не живут.

В первые дни и недели были актуальны карты по йоду, но никто их не публиковал, всё было засекречено и в результате этого население наших земель получило йодный удар. Если человек родился, условно говоря, в 1980 году и ему сейчас около 30 лет, то 80 процентов от той дозы, которую он получил, были приобретены им в первые недели и дни после аварии.

Поэтому если у меня спрашивают «надо ли было уезжать?» я отвечаю, что уезжать надо было 25 апреля, а сейчас стоит жить, но выполнять определённые ограничения и меры предосторожности.

К тому же если брать тот же Гомель, то отдельные районы в центре Москвы по уровню радиации были даже больше. Поэтому всегда стоит учитывать и другие экологические факторы загрязнённости вашего населённого пункта.

Справка:

Автором картографических материалов является МЧС Беларуси и МЧС России, которые совместно издали Атлас современных и прогнозных аспектов последствий аварии на Чернобыльской АЭС на пострадавших территориях России и Беларуси.

Каждые десять минут – обновлённая информация. Любое изменение радиационных показателей специалисты видят сразу же. В случае опасности система подаст тревожный сигнал.

Где наблюдают?

Несмотря на то, что по закону «чернобыльскими» считаются не все области Беларуси, специалисты следят за радиационным фоном во всех уголках страны. Ведь, во-первых, последствия аварии затронули все регионы Беларуси, а следы её заметны по всей Европе. А, во-вторых, в соседних странах возле границ Беларуси расположены четыре атомные электростанции, которые могут воздействовать на радиационную обстановку в нашей стране.

Специалисты следят за радиационной обстановкой в Беларуси 24 часа в сутки семь дней в неделю

Основная организация, которая отслеживает радиационный фон в Беларуси, – Республиканский центр по гидрометеорологии, контролю радиоактивного загрязнения и мониторингу окружающей среды Министерства природных ресурсов и охраны окружающей среды Республики Беларусь (Гидромет). Здесь работает служба радиационно-экологического мониторинга, специалисты которой следят за радиационной обстановкой в Беларуси 24 часа в сутки семь дней в неделю. Наблюдения включают контроль естественного радиационного фона на чистых и загрязнённых из-за аварии на ЧАЭС зонах, а также на территориях, находящихся в зонах влияния АЭС соседних стран: Смоленская – в России, Чернобыльская и Ровенская – в Украине, Игналинская – в Литве. Основной показатель, который отслеживают специалисты, – мощность дозы гамма-излучения.

– Данные оперативного контроля мы получаем с помощью автоматизированных систем радиационного контроля, в которых установлены датчики Гейгера-Мюллера. Их четыре, они работают в зонах влияния всех АЭС, которые находятся недалеко от границ Беларуси. По всей Беларуси равномерно расположено ещё 45 стационарных пунктов, где работают люди с дозиметрами, – рассказала начальник отдела реагирования на чрезвычайные ситуации Республиканского центра по гидрометеорологии, контролю радиоактивного загрязнения и мониторингу окружающей среды Министерства природных ресурсов и охраны окружающей среды Алла Шайбак .

На загрязнённых после аварии на ЧАЭС территориях специалисты также контролируют атмосферный воздух, поверхностные воды и почву.

Воздух исследуют двумя способами: отбирают пробы радиоактивных выпадений из атмосферы и берут пробы радиоактивных аэрозолей. Для первого метода есть 27 пунктов наблюдений. Там измеряют, сколько в сутки выпадает радионуклидов на горизонтальный планшет в кубический метр. Марлю с планшета меняют каждый день и в лабораториях исследуют её: измеряют содержание радионуклидов и суммарную бета-активность.

Для измерения радиоактивных аэрозолей используют фильтро-вентиляционные установки в семи пунктах наблюдений: Мстиславле, Могилёве, Минске, Гомеле, Пинске, Браславе и Мозыре. Для этого прокачивают большие объёмы воздуха на ткань Петрянова, затем её вынимают и в лабораториях измеряют по ней содержание радионуклидов.

Содержание радионуклидов контролируют в реках Днепр, Припять, Сож, Беседь, Ипуть, Нижняя Брагинка и в озере Дрисвяты. Как рассказала начальник отдела научно-исследовательских работ и радиационно-экологического мониторинга Республиканского центра по гидрометеорологии, контролю радиоактивного загрязнения и мониторингу окружающей среды Министерства природных ресурсов и охраны окружающей среды Ольга Жукова , проблемы есть только в Нижней Брагинке, где отмечено повышенное содержание стронция-90.

На «чернобыльских» территориях берут пробы на четыре радионуклида: цезий-137, стронций-90, америций-241 и плутоний-238, 239, 240. Это те элементы, которые попали в окружающую среду после аварии на ЧАЭС. Во время происшествия произошёл выброс ещё и йода-131, но период его полураспада - 8 дней, поэтому его следов давно нет.

Замеченные угрозы

– Пять лет назад, после взрыва на Фукусиме, радионуклиды добрались и до нас. Об этом говорят данные приборов, точно уловивших тогда нечернобыльские элементы, – рассказывает Ольга Жукова. – Это был единственный случай после аварии на ЧАЭС, когда в Беларуси зафиксировали короткоживущие радионуклиды, в том числе йод-131. Их наличие помогает понять, что выброс элементов произошёл недавно. В Беларуси содержание таких радионуклидов измеряется каждый день в районах, близких к работающим станциям.

– После чернобыльской аварии мы ни разу не видели, чтобы короткоживущие радионуклиды были зафиксированы. Наша сеть мониторинга сработала хорошо, и на всех семи пунктах наблюдений зафиксировали йод-131, а также цезий-134 и цезий-137 нечернобыльского происхождения. Соотношение последних двух элементов было не таким, как в 1986 году. Это сразу дало понять, что источник радионуклидов другой, – рассказала Ольга Жукова .

– Опасных последствий взрыва на Фукусиме для белорусов не было, потому что до нас дошли только далёкие отголоски радиоактивных элементов. Только благодаря современным высокочувствительным полупроводниковым гамма-спектрометрам белорусские специалисты зафиксировали это излучение. Если бы сейчас пользовались тем оборудованием, какое было до чернобыльской аварии, таких низких уровней радиоактивного загрязнения мы не смогли бы зафиксировать, – признаётся Ольга Жукова.

Приборы засекли увеличение фона на чернобыльской территории.

– Во время лесных пожаров в 10-километровой зоне в Украине и в 30-километровой зоне Полесского государственного радиационно-экологического заповедника на территории Беларуси мы зафиксировали в воздухе повышенное содержание цезия-137 чернобыльского происхождения. Пробы аэрозолей отбирали с помощью передвижной фильтро-вентиляционной установки. Она помогает оперативно оценить уровень загрязнения в месте, близком к эпицентру пожара. Пригодилась она и в конце августа 2015 года, когда горели Ольмаские болота в Брестской области. В Пинске среднемесячное значение объёмной активности цезия-137 составило 3,0 10-5 Бк/м 3 , что превысило фоновые значения для этого пункта наблюдения в шесть раз, – рассказала Ольга Жукова.

Гидромет имеет не только стационарные, но и передвижные станции.

Так выглядят изнутри передвижные станции. Фото Ольги Астапович

Такие мобильные лаборатории могут выехать в любую точку Беларуси, чтобы провести все необходимые измерения.

Влияют ли на нас чужие АЭС?

По разные стороны Беларуси недалеко от границы расположено четыре АЭС, так или иначе влияющих на радиационную обстановку в нашей стране. Специалисты контролируют 100-километровую зону вокруг каждой из них. Это так называемые зоны воздействия АЭС. Сейчас в непосредственной близости от Беларуси работает две атомные электростанции – в Ровно и Смоленске. Игналинская АЭС с 2009 года не производит энергию, сейчас её выводят из эксплуатации. Однако это не значит, что опасности она теперь не представляет.

– Возле Игналинской АЭС строится промежуточное хранилище отработавшего ядерного топлива, хранилище низкоуровневых и среднеуровневых радиактивых отходов и ещё несколько хранилищ отходов, которые несут опасность. Не дай Бог, теракт или другое происшествие… От АЭС до белорусской границы – три с половиной километра по зеркалу воды. Новую литовскую АЭС собираются строить и того ближе, -– рассказала Ольга Жукова.

Другая проблема: радионуклиды попадают в озеро Дрисвяты, которое находится на границе двух стран. Большая часть радионуклидов – тяжёлые, потому сразу оседают на дно. Однако с активным слоем донных отложений они могут мигрировать на белорусскую часть озера.

В районе строящейся Островецкой атомной электростанции Гидромет уже проводит радиационный мониторинг атмосферного воздуха, поверхностных вод и почвы. Подготовлена программа радиационного мониторинга, выбраны пункты наблюдений, определена их периодичность, проводятся измерения радионуклидов в объектах окружающей среды. Собираться данные о радиационном фоне вокруг белорусской АЭС будут тоже в Гидромете.

Что будет при чрезвычайной ситуации?

Информация с пунктов контроля по всей Беларуси поступает на экран инженера отдела реагирования на чрезвычайные ситуации каждые 10 минут. Здесь в режиме онлайн на карте можно увидеть показатели со всех пунктов измерений автоматизированных систем контроля. В этом отделе работает семь человек, основная задача которых – оперативно контролировать радиационную обстановку на территории Беларуси.

Фото Надежды Дубовской

Как рассказала Алла Шайбак, в случае какого-то происшествия первым информацию об изменении фона увидит дежурный инженер, а в точках автоматического контроля сработают световые и звуковые сигналы. Данные обязательно проверят, причём, не только с помощью автоматики. В стационарных пунктах контроля специалисты с приборами могут уточнить информацию. Сделают это и в МЧС. Это министерство - основной коллега Гидромета в случае чрезвычайного происшествия. Далее все системы переходят в усиленный режим работы, а специалисты МЧС и Гидромета оперативно выезжают в район, где случилась такая ситуация. Могут спрогнозировать специалисты и возможную зону распространения загрязнения, базируясь на реальных метеорологических данных. Вся информация об уровне радиации и о метеорологической обстановке передаётся в МЧС, и уже оно принимает решение об оповещении населения.

Многие хотят обезопасить себя и пробуют самостоятельно измерять радиационный фон. Алла Шайбак говорит, что это не имеет смысла, ведь достоверность измерения зависит от качества прибора, которым бытовые дозиметры часто не могут похвастаться.

– Бытовые дозиметры часто приводят к панике. Они могут как завышать значения гамма-фона, так и занижать их. Бывают элементарные сбои: если батарейка разрядилась, дозиметр уже зашкаливает. Все приборы, работающие на службе Гидромета, поверяются раз в год и работают точно. Качества работы бытового дозиметра не может обещать никто, – отмечает специалист. – Данные о радиационном фоне не секретны. В местах автоматизированных станций есть табло, где местное население может видеть актуальную информацию. Мы регулярно публикуем их на своём сайте , есть эта информация на сайте Минприроды, отправляется и в СМИ.

Проверьте, нет ли рядом с вами АЭС, завода или НИИ атомной тематики, хранилища радиоактивных отходов или ядерных ракет.

Атомные электростанции

В настоящее время в России действуют 10 атомных электростанций и еще две строятся (Балтийская АЭС в Калининградской области и плавучая АЭС «Академик Ломоносов» на Чукотке). Подробнее о них можно прочитать на официальном сайте Росэнергоатома.

В то же время, атомные электростанции на пространстве бывшего СССР нельзя считать многочисленными. По состоянию на 2017 г. в мире эксплуатируются 191 АЭС, в том числе 60 в США, 58 в Европейском союзе и Швейцарии и 21 в Китае и Индии. В непосредственной близости от российского Дальнего Востока работают 16 японских и 6 южно-корейских АЭС. Весь список действующих, строящихся и закрытых АЭС, с указанием их точного расположения и технических характеристик, можно найти в Википедии.

Заводы и НИИ атомной тематики

Радиационно-опасными объектами (РОО), помимо АЭС, являются предприятия и научные организации атомной отрасли и судоремонтные заводы, специализирующиеся на атомном флоте.

Официальная информация по РОО по регионам России — на сайте Росгидромета, а также в ежегоднике «Радиационная обстановка на территории России и сопредельных государств» на сайте НПО «Тайфун».

Радиоактивные отходы


Радиоактивные отходы низкой и средней активности образуются в промышленности, а также в научных и медицинских организациях по всей стране.

В России их сбором, транспортировкой, переработкой и хранением занимаются дочерние предприятия Росатома — РосРАО и Радон (в Центральном регионе).

Кроме того, РосРАО занимается утилизацией радиоактивных отходов и отработавшего ядерного топлива со списанных атомных подводных лодок и кораблей ВМФ, а также экологической реабилитацией загрязненных территорий и радиационно-опасных объектов (таких, как бывший завод по переработке урана в Кирово-Чепецке).

Информацию об их работе в каждом регионе можно найти в экологических отчетах, опубликованных на сайтах Росатома, филиалов РосРАО, и предприятия Радон.

Военные атомные объекты

Среди военных атомных объектов наиболее экологически опасны, по-видимому, атомные подводные лодки.

Атомные подводные лодки (АПЛ) называются так потому, что работают на атомной энергии, за счет которой приводятся в действие двигатели лодки. Некоторые из АПЛ также являются носителями ракет с ядерными боеголовками. Однако известные из открытых источников крупные аварии на АПЛ были связаны с эксплуатацией реакторов или же с другими причинами (столкновение, пожар и др.), а не с ядерными боеголовками.

Атомные энергетические установки имеются также и на некоторых надводных кораблях ВМФ, таких как атомный крейсер «Петр Великий». Они также создают определенный экологический риск.

Информация по местам базирования АПЛ и атомных кораблей ВМФ показана на карте по данным открытых источников.

Второй тип военных атомных объектов — подразделения РВСН, имеющие на вооружении баллистические ядерные ракеты. Случаев радиационных аварий, связанных с ядерным боекомплектом в открытых источниках не обнаружено. Текущее расположение соединений РВСН показано на карте по информации Министерства обороны.

На карте нет пунктов хранения ядерного боезапаса (боеголовок ракет и авиабомб), которые также могут представлять экологическую угрозу.

Ядерные взрывы

В 1949-1990 годах в СССР была реализована обширная программа из 715 ядерных взрывов в военных и промышленных целях.

Испытания ядерного оружия в атмосфере

С 1949 по 1962 гг. СССР произвел 214 испытаний в атмосфере, в том числе 32 наземных (c наибольшим загрязнением окружающей среды), 177 воздушных, 1 высотный (на высоте более 7 км) и 4 космических.

В 1963 г. СССР и США подписали договор о запрете ядерных испытаний в воздухе, воде и космосе.

Семипалатинский полигон (Казахстан) — место испытания первой советской ядерной бомбы в 1949 г. и первого советского прототипа термоядерной бомбы мощностью 1,6 Мт в 1957 г. (он же был и самым крупным испытанием за историю полигона). Всего здесь было произведено 116 атмосферных испытаний, включая 30 наземных и 86 воздушных.

Полигон на Новой Земле — место беспрецедентной серии сверхмощных взрывов в 1958 и 1961-1962 гг. Всего было испытано 85 зарядов, включая самый мощный в мировой истории — «Царь-бомбу» мощностью 50 Мт (1961 г.). Для сравнения, мощность атомной бомбы, сброшенной на Хиросиму, не превышала 20 кт. Кроме того, в бухте Черная Новоземельского полигона изучались поражающие факторы ядерного взрыва на объекты флота. Для этого в 1955-1962 гг. были произведены 1 наземный, 2 надводных и 3 подводных испытания.

Ракетный испытательный полигон «Капустин Яр» в Астраханской области — действующий полигон российской армии. В 1957-1962 гг. здесь произвели 5 воздушных, 1 высотный и 4 космических испытания в ракетном исполнении. Максимальная мощность воздушных взрывов составляла 40 кт, высотного и космических — 300 кт. Отсюда же в 1956 г. была запущена ракета с ядерным зарядом 0,3 кт, упавшая и разорвавшаяся в Каракумах в районе г. Аральск.

На Тоцком полигоне в 1954 г. проводились военные учения, в ходе которых была сброшена атомная бомба мощностью 40 кт. После взрыва войсковым частям предстояло «взять» объекты, подвергшиеся бомбардировке.

Кроме СССР в Евразии ядерные испытания в атмосфере производил только Китай. Для этого использовался полигон Лобнор на северо-западе страны, примерно на долготе Новосибирска. В общей сложности в 1964-1980 гг. Китай произвел 22 наземных и воздушных испытания, включая термоядерные взрывы мощностью до 4 Мт.

Подземные ядерные взрывы

СССР осуществлял подземные ядерные взрывы с 1961 по 1990 гг. Изначально они были направлены на развитие ядерного оружия в связи с запретом проведения испытаний в атмосфере. С 1967 г. началось и создание ядерно-взрывных технологий в промышленных целях.

В общей сложности из 496 подземных взрывов 340 были произведены на Семипалатинском полигоне и 39 на Новой Земле. Испытания на Новой Земле в 1964-1975 гг. отличались высокой мощностью, включая рекордный (около 4 Мт) подземный взрыв в 1973 г. После 1976 г. мощность не превышала 150 кт. Последний ядерный взрыв на Семипалатинском полигоне был произведен в 1989 г., на Новой Земле — в 1990 г.

Полигон «Азгир» в Казахстане (вблизи российского г. Оренбурга) использовался для отработки промышленных технологий. С помощью ядерных взрывов здесь создавались полости в пластах каменной соли, а при повторных взрывах в них нарабатывались радиоактивные изотопы. Всего было произведено 17 взрывов мощностью до 100 кт.

За пределами полигонов в 1965-1988 гг. были выполнены 100 подземных ядерных взрывов в промышленных целях, в том числе 80 в России, 15 в Казахстане, по 2 в Узбекистане и Украине и 1 в Туркменистане. Их целью были глубокое сейсмозондирование для поиска полезных ископаемых, создание подземных полостей для хранения природного газа и промышленных отходов, интенсификация добычи нефти и газа, перемещение больших массивов грунта для строительства каналов и плотин, тушение газовых фонтанов.

Другие страны. Китай произвел 23 подземных ядерных взрыва на полигоне Лобнор в 1969-1996 гг., Индия — 6 взрывов в 1974 и 1998 гг., Пакистан — 6 взрывов в 1998 г., КНДР — 5 взрывов в 2006-2016 гг.

США, Великобритания и Франция производили все свои испытания за пределами Евразии.

Литература

Многие данные о ядерных взрывах в СССР являются открытыми.

Официальная информация о мощности, цели и географии каждого взрыва опубликована в 2000 г. в книге коллектива авторов Минатома России «Ядерные испытания СССР ». Здесь же приведена история и описание Семипалатинского и Новоземельского полигонов, первых испытаний ядерной и термоядерной бомб, испытания «Царь-бомбы», ядерного взрыва на Тоцком полигоне и другие данные.

Детальное описание полигона на Новой Земле и программы испытаний на нем можно найти в статье «Обзор советских ядерных испытаний на Новой Земле в 1955-1990 годах », а их экологических последствий — в книге «

Список атомных объектов, составленный в 1998 г. журналом «Итоги», на сайте Kulichki.com.

Предположительное расположение различных объектов на интерактивных картах